Ứng dụng Bao lồi

Bao lồi được ứng dụng rộng rãi trong nhiều lĩnh vực. Trong toán học, bao lồi được dùng để nghiên cứu đa thức, giá trị riêng của ma trận, phần tử đơn nguyên đơn vị và một số định lý liên quan đến bao lồi trong hình học rời rạc. Trong thống kê chuẩn mạnh, bao lồi là đường viền ngoài cùng của độ sâu Tukey, là một phần quan trọng của biểu đồ túi minh họa dữ liệu hai chiều, và được dùng để xác định tập nguy cơ của các quy tắc ra quyết định ngẫu nhiên. Bao lồi của vectơ chỉ thị của lời giải cho các bài toán tổ hợp là nội dung trọng tâm trong tối ưu hóa tổ hợptổ hợp đa diện. Trong kinh tế, bao lồi có thể được dùng để áp dụng các phương pháp về tính lồi trong kinh tế cho các thị trường không lồi. Trong mô hình hóa hình học, đặc tính bao lồi đường cong Bézier hỗ trợ tìm các giao điểm của chúng, và bao lồi là một phần không thể thiếu trong việc đo thân tàu. Và trong nghiên cứu về tập tính của động vật, bao lồi xuất hiện trong một định nghĩa tiêu chuẩn về phạm vi chỗ ở.

Toán học

Phân hoạch của bảy điểm thành ba tập con với bao lồi giao nhau, luôn luôn tồn tại với bảy điểm bất kỳ trong mặt phẳng theo định lý Tverberg

Đa giác Newton của đa thức đơn biến và đa diện Newton của đa thức đa biến là bao lồi của các điểm được suy ra từ số mũ của các hạng tử trong đa thức, và có thể được dùng để phân tích tính tiệm cận của đa thức và giá trị của nghiệm của đa thức đó.[48] Bao lồi và đa thức cũng có liên hệ với nhau trong định lý Gauss–Lucas, theo đó mọi nghiệm của đạo hàm của một đa thức đều nằm trong bao lồi của các nghiệm của đa thức đó.[49]

Trong lý thuyết phổ, miền số của một ma trận chuẩn tắc là bao lồi của các giá trị riêng của nó.[50] Định lý Russo–Dye mô tả bao lồi của các phần tử đơn nguyên đơn vị trong một C*-đại số.[51] Trong hình học rời rạc, định lý Radonđịnh lý Tverberg có liên quan đến sự tồn tại phân hoạch của các tập hợp điểm thành các tập con với bao lồi giao nhau.[52]

Định nghĩa tập lồi là tập hợp chứa tất cả các đoạn thẳng nối các điểm của nó và bao lồi là giao của tất cả các tập cha lồi đều áp dụng được cho không gian hyperbol và không gian Euclid. Tuy nhiên, trong không gian hyperbol, còn có thể xét đến bao lồi của tập hợp điểm lý tưởng gồm những điểm không thuộc chính không gian hyperbol mà chỉ nằm trong đường biên của một mô hình không gian đó. Đường biên của bao lồi của các điểm lý tưởng của không gian hyperbol ba chiều là tương tự với bề mặt xiên trong không gian Euclid, và các tính chất mêtric của chúng đóng vai trò quan trọng trong giả thuyết hình học hóa trong tôpô ít chiều.[53] Bao lồi hyperbol cũng được dùng khi tính tam giác đạc chính tắc của đa tạp hyperbol, hay xác định xem hai nút thắt có bằng nhau hay không.[54]

Xem thêm mục chuyển động Brown về ứng dụng của bao lồi trong chuyển động Brown, và mục đường cong ghềnh về ứng dụng của bao lồi trong lý thuyết về bề mặt khai triển được.

Thống kê

Biểu đồ túi. Vùng được tô màu nhạt ở ngoài cùng là bao lồi, và vùng được tô màu đậm hơn ở bên trong là hình bao với độ sâu Tukey là 50%.

Trong thống kê chuẩn mạnh, bao lồi là một trong những thành phần chủ chốt của một biểu đồ túi, một phương pháp để minh họa phân bố của các điểm mẫu hai chiều. Các hình bao của độ sâu Tukey tạo thành một họ tập lồi lồng nhau với bao lồi nằm ngoài cùng, và đồ thị túi cũng hiển thị một đa giác khác có hình bao với độ sâu 50% từ họ lồng nhau đó.[55]

Trong lý thuyết quyết định thống kê, tập nguy cơ của một quy tắc ra quyết định ngẫu nhiên là bao lồi của các điểm nguy cơ của các quy tắc ra quyết định tất định nằm dưới nó.[56]

Tối ưu hóa tổ hợp

Đối tượng nghiên cứu trọng tâm trong tối ưu hóa tổ hợptổ hợp đa diện là bao lồi của vectơ chỉ thị của lời giải cho một bài toán tổ hợp. Nếu mặt của các đa diện đó có thể tìm được, mô tả đa diện là giao của các nửa không gian, thì các thuật toán dựa trên quy hoạch tuyến tính có thể được dùng để tìm lời giải tối ưu.[57] Bao lồi của các vectơ trọng số của các nghiệm đó, một dạng khác của bao lồi, cũng được dùng trong tối ưu hóa đa mục tiêu. Ta có thể cực đại hóa bất kỳ tổ hợp tựa lồi của các trọng số bằng cách tìm và kiểm tra từng đỉnh của bao lồi, hiệu quả hơn nhiều so với khi kiểm tra tất cả các nghiệm có thể có.[58]

Kinh tế

Trong mô hình Arrow–Debreu của cân bằng kinh tế tổng thể, đại diện kinh tế được giả thiết là có tập ngân sách lồi và ưa thích lồi. Các giả thiết này của tính lồi trong kinh tế có thể được dùng để chứng minh sự tồn tại của một cân bằng như thế. Khi dữ liệu kinh tế trong thực tế là phi lồi thì có thể chuyển dữ liệu này sang trạng thái lồi bằng cách lấy bao lồi của nó. Định lý Shapley–Folkman có thể được áp dụng để chứng minh rằng với các thị trường lớn thì phép xấp xỉ này là chính xác và dẫn đến một "tựa cân bằng" đối với thị trường phi lồi ban đầu.[59]

Mô hình hóa hình học

Trong mô hình hóa hình học, một trong những tính chất then chốt của đường cong Bézier là nó nằm trong bao lồi của các điểm kiểm soát của nó. "Tính chất bao lồi" này có thể được áp dụng, chẳng hạn, để nhanh chóng tìm ra giao điểm của các đường cong như vậy.[60]

Trong thiết kế tàu thuyền, chu vi xích thân tàu là một độ đo kích thước của một tàu buồm, được xác định bằng bao lồi của mặt cắt ngang thân tàu. Nó khác với chu vi mặt ngoài thân tàu là chu vi của chính mặt cắt đó ngoại trừ đối với tàu thuyền có bao lồi.[61]

Tập tính học

Bao lồi thường được xem là đa giác lồi nhỏ nhất trong tập tính học, một lĩnh vực nghiên cứu hành vi của động vật, ở đó nó là cách tiếp cận cổ điển để ước lượng phạm vi chỗ ở của một loài động vật dựa vào các điểm mà loài động vật đó được quan trắc.[62] Các điểm ngoại lai có thể làm kích thước của đa giác đó tăng một cách quá mức; một hướng tiếp cận khác để hạn chế tình trạng này là chỉ ước lượng dựa trên tập con của các điểm quan trắc, chẳng hạn như chọn một trong các lớp lồi sát với một tỉ lệ mật độ điểm dữ liệu làm mẫu,[63] hoặc áp dụng phương pháp bao lồi cục bộ bằng cách hợp bao lồi của láng giềng của các điểm.[64]

Vật lý lượng tử

Trong vật lý lượng tử, không gian trạng thái của một hệ thống lượng tử — tập hợp tất cả các cách hệ thống có thể được thiết lập — là một bao lồi có điểm cực biên là các toán tử nửa xác định dương gọi là trạng thái thuần và các điểm ở phía trong gọi là trạng thái hỗn hợp.[65] Định lý Schrödinger–HJW chứng minh rằng một trạng thái hỗn hợp bất kỳ có thể được viết thành tổ hợp lồi của các trạng thái thuần theo nhiều cách khác nhau.[66]

Tài liệu tham khảo

WikiPedia: Bao lồi http://mathworld.wolfram.com/ConvexHull.html http://www.heldermann-verlag.de/jgg/jgg01_05/jgg01... http://citeseerx.ist.psu.edu/viewdoc/download?doi=... //www.ams.org/mathscinet-getitem?mr=0237460 //www.ams.org/mathscinet-getitem?mr=0274683 //www.ams.org/mathscinet-getitem?mr=0356305 //www.ams.org/mathscinet-getitem?mr=0404097 //www.ams.org/mathscinet-getitem?mr=1173256 //www.ams.org/mathscinet-getitem?mr=1216521 //www.ams.org/mathscinet-getitem?mr=1226891